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Determination of the membrane topology is an essential step in structural and functional studies of inte-
gral membrane proteins, yet the choices of membrane topology reporters are limited and the experimen-
tal analysis can be laborious, especially in eukaryotic cells. Here, we present a robust membrane topology
reporter, glycosylatable green fluorescent protein (gGFP). gGFP is fully fluorescent in the yeast cytosol but
becomes glycosylated and does not fluoresce in the lumen of the endoplasmic reticulum (ER). Thus, by
assaying fluorescence and the glycosylation status of C-terminal fusions of gGFP to target membrane pro-
teins in whole-cell lysates, the localization of the gGFP moiety (and hence the fusion joint) relative to the
ER membrane can be unambiguously determined.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction exposed to one side of the membrane only (e.g. cytosol or ER
The topology of a membrane protein – i.e. a two-dimensional
model showing the location of the transmembrane (TM) segments
and the overall orientation of the protein relative to the membrane
– is a basic characteristic that helps guide structure-function stud-
ies and provides a necessary starting point for de novo structure
modelling.

While current topology prediction programs perform quite well
[1–4], the combination of even limited experimental data (knowl-
edge of the location of the protein’s C terminus relative to the
membrane) and bioinformatics prediction greatly improves the
reliability of the resulting membrane topology models [5–8]. Even
in cases where 3-dimensional structures are available, the struc-
tural information does not reveal how these proteins are orien-
tated in the native membrane since they are determined as a
membrane solubilized form. Thus, membrane topology still has
to be determined by biochemical and/or cell biological experi-
ments. Therefore, efficient experimental tools to determine the
topology of a membrane protein are indispensable in the mem-
brane biology toolkit.

Commonly available approaches to determine membrane pro-
tein topology include protease protection, antibody/epitope acces-
sibility assays, and reporter protein fusions [9–12]. Most of these
methods allow positive identification of soluble loops that are
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lumen), thus two different experiments have to be carried out to
obtain conclusive results. In yeast, a dual-function membrane
topology reporter composed of invertase (a protein that contains
numerous acceptor sites for N-linked glycosylation) and the cata-
lytic domain of histidinol dehydrogenase has been developed and
used successfully [5,7,13]. However, the size of this reporter is very
large (�125 kDa) and its usage is limited to yeast.

In an effort to develop a more robust membrane topology repor-
ter for eukaryotic cells, we have engineered a GFP with a strategi-
cally placed N-linked glycosylation acceptor site (gGFP). gGFP
exhibits high levels of fluorescence when localized in the cytosol.
In contrast, gGFP is glycosylated and non-fluorescent when local-
ized in the ER lumen. When fused to the C terminus of a membrane
protein of interest, gGFP serves as a positive reporter both for a lu-
menal localization (glycosylated, non-fluorescent) and for a cyto-
solic localization (non-glycosylated, fluorescent) of the fusion
joint. We have validated the use of gGFP as a topology reporter
by fusing it to different membrane proteins of known topology.

Compared to the invertase-histidinol dehydrogenase dual-
function reporter, gGFP has the advantages of relatively small size
and easy detection by fluorescence in whole cells or whole-cell
lysates. gGFP (or variants thereof) further has the potential to be
applicable to other eukaryotic cells beyond yeast.

2. Materials and methods

2.1. Plasmid construction

We initially constructed a plasmid carrying genes of Escherichia
coli LepH2-HA [14] and yEGFP [15] by overlap PCR [16]. In the first
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round of PCR, two reactions, one to amplify the sequences carrying
LepH2-HA and the other to amplify yEGFP with the 50 overhang
nucleotides complementing the end of the HA sequence, were set
up. One reaction was carried out using the construct carrying
E. coli LepH2-HA [14] as a PCR template and primers A and B. Pri-
mer A (50TCGACGGATTCTAGAACTAGTGGATCCCCCATGGCGAATTC-
CACCAGC30) contains the homologous recombination sequence to
the vector, p424GPD [17], and the start of the LepH2-HA gene
(underlined). Primer B (50AACACCAGTGAATAATTCTTCACCTTTAGA
ATTACATAGCTCGAGGAG30) contains the end of the LepH2-HA se-
quence excluding the stop codon and the yEGFP sequence except
the initiation Met codon. In a parallel reaction, pDD1-2 [18] was
used as a PCR template with primers C and D. The primer C
(50CCAGATTACGCTCTCCTCGAGTCATGTAATTCTAAAGGTGAAGA30)
contains the complementary sequence of primer B, and primer D
(50ATCGATAAGCTTGATATCGAATTCCTGCAGTTTGTACAATTCATC-
CAT30) contains the end of yEGFP sequence (underlined) and the
homologous recombination sequence to p424GPD [17]. After
checking the correct sizes of the two PCR fragments (�1100 bp of
LepH2-HA and �700 bp of yEGFP), the second round of the PCR
was carried out using the first two PCR reactions as templates
and primers A and D. The correct size of LepH2-HA-yEGFP recombi-
nant gene (�1800 bp) was confirmed by agarose gel electrophore-
sis. For plasmid construction by homologous recombination, this
PCR fragment was transformed into a Saccharomyces cerevisiae
strain, W303-1a (MAT a, ade2, can1, his3, leu2, trp1, ura3) together
with Sma I-linearized p424GPD. Yeast transformants were selected
on �Trp plates, plasmids were isolated, and the gene coding
sequence was confirmed by DNA sequencing. The sequence was
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Fig. 1. Engineering a glycosylatable GFP (gGFP). (A) Structure of yEGFP (PDB 3AI4) [23]. T
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merged.
correct except that the stop codon at the end of the yEGFP was
missing. We found out that primer D did not contain the stop co-
don of yEGFP. Nevertheless, this plasmid (designated as pJM1)
was used to construct the following plasmids as it contained the
correct HA-yEGFP sequence.

To construct the plasmid carrying the genes encoding HA-yEGFP,
pJM1 was used as a PCR template with primers E
(50GTTTCGACGGATTCTAGAACTAGTGGATCCATGCCATCTTACCCATA
CGATG30) which contains the initiation Met codon for translation of
HA (underlined), and F (50ATCGATAAGCTTGATATCGAATTCCTG-
CAGTTATTTGTACAATTCATCCAT30) that includes the stop codon at
the end of the yEGFP sequence (underlined). The PCR fragment
was then transformed into W303-1a strain, selected on �Trp plate,
plasmids were isolated and sequenced. The correct sequence was
confirmed and the plasmid was named as pHL1. For construction
of a plasmid carrying the gene encoding an ER version of HA-yEGFP,
a signal peptide of SUC2 was amplified by PCR using a vector carry-
ing the genes of the SP-Lep-H-segment [19] and primers G
(50GTTTCGACGGATTCTAGAACTAGTGGATCCATGCTTTTGCAAGCTT-
TC30) that contains the start of the SUC2 signal peptide (underlined)
and H (50CATCGTATGGGTAAGATGGCATTGATGCAGATATTTTGGC30)
that contains the end of the SUC2 signal peptide and the overhang
complementing the start of the HA-yEGFP sequence. The PCR frag-
ment was subcloned into p424GPD vector by homologous recombi-
nation as described above, and the correct sequences were
confirmed by DNA sequencing, and the plasmid was named as pHL2.

Following constructs were prepared by overlap PCR and were
subcloned by yeast homologous recombination as described above.
The PCR fragment of HA-GFP(I123T) was obtained using pHL1 as a
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PCR template and primers A, I (50TTTTAATTCGGTTCTATTAA
CTAAGGTATC30), J (50GTTAATAGAACCGAATTAAAAGGTATTG30)
and F. Similarly, the PCR fragment of the HA-GFP(E172T) was ob-
tained using pHL1 as a PCR template and primers A, K (50AGA-
ACCATCTGTAATGTTGTGTCTAATTTTG30), L (50CACAACATTACAGAT
GGTTCTGTTCAATTAG30) and F. For the E172T mutation in the ER
version of HA-yEGFP (SP-HA-GFP(E172T)), pHL2 as a PCR template
and primers A, K, L and F were used.

For construction of plasmids carrying the gene coding
sequences of Lep-HA-GFP(E172T), the E. coli Lep sequences were
subcloned using plasmids used in [14] and primers A, p183FOR
(ACCTACTCAAACGTGGAACCGAGC), p183REV (GCTCGGTTCCAC
GTTTGAGTAGGT) and F. The Lep-Cin construct contains the P2 se-
quence (GGPGDKQEGEWPTGLRLSRIGGIGPGG) in place of the sec-
ond hydrophobic segment (H2 segment) of E. coli Lep protein
whereas the Lep-Cout construct contains the [6L/13A] sequence
(GGPGAAAALALALALALALAAAAGPGG) in place of the H2 segment
[14].

HA-GFP(E172T) with an additional glycosylation site was made
using a site-directed mutagenesis kit (Toyobo) following the man-
ufacturer’s protocol.
2.2. Protein preparation and Western blot analysis

Yeast transformants expressing gGFP fusion constructs were
grown overnight at 30 �C in 5 ml of �Trp medium. Whole-cell
lysates were prepared as previously described [5]. Lysates were
incubated with or without endoglycosidase H (Roche) for 2 h at
37 �C to remove N-linked oligosaccharides. SDS–PAGE and
Western blot analysis with an anti-HA antibody were followed.
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Fig. 2. gGFP can be used as a membrane topology reporter. (A) Schematic representation
TM1 indicates TM segment 1 of E.coli Lep [22], P stands for a polar segment, and H stands
prepared from yeast transformants expressing Lep-Cin-gGFP or Lep-Cout-gGFP. Fluorescen
expressing Lep-Cin-gGFP or Lep-Cout-gGFP. ddd indicates a triply glycosylated form,
⁄indicates a cleaved product.
Western blots were developed with Amersham Bioscience
Advanced ECL kit on a Biorad Chemi-doc-XRS+ system (Biorad).
2.3. Fluorescence measurements

Yeast transformants expressing gGFP fusion constructs were
grown in 10 ml of �Trp medium at 30 �C overnight. Cells were har-
vested at 0.3–0.6 OD600 by centrifugation at 3,000g and resus-
pended in 200 ll of YSB buffer (50 mM Tris–HCl, pH 7.6, 5 mM
EDTA, pH 8, 10% (w/v) Glycerol and 1� Protease Inhibitor Cocktail).
Cells were transferred to a 96-well microplate (Nunc) and the fluo-
rescence measurements were taken on Perkin Elmer Envision 2102
Multilabel reader with excitation band pass filter at 460 nm and
cut-off FITC filter at 535 nm. All fluorescence measurements were
subtracted by fluorescence from whole-cell lysates of yeast trans-
formants carrying an empty vector. Averages of at least three inde-
pendent measurements were plotted with standard errors.
2.4. Fluorescence microscopy

Yeast transformants expressing gGFP fusion constructs were
grown overnight in 5 ml of �Trp medium at 30 �C. 100 ll of cells
were taken from 0.7 OD600 culture. Cells were transferred to a 96
well plate for fluorescence assessment using a Zeiss Axiovert
200 M inverted microscope with a Plan-NeoFluar 100�/1.30 NA
oil-immersion objective lens. Fluorescence images were taken as
described in [20] using a standard fluoresceinisothiocyanate (FITC)
filter set (excitation band pass filter, 450–490 nm; beam splitter,
510 nm; emission band pass filter, 515–565 nm). The pictures
were taken with an exposure time of 0.2 ms.
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3. Results

3.1. Engineering of a glycosylatable gGFP

The rationale behind our design of gGFP was the assumption
that the presence of an N-linked glycan near the GFP fluorophore
might interfere with protein folding and maturation of the fluoro-
phore, rendering the protein non-fluorescent. Based on the X-ray
structure of GFP [21], we initially targeted two Asn residues at
positions 121 and 170, near the fluorophore (Fig. 1A). To generate
an N-linked glycosylation acceptor site, Asn-X-Thr/Ser-Y (where X,
Y can be any amino acid except proline), Ile123 and Glu172, two res-
idues downstream of the Asn residues at positions 121 and 170,
were individually changed to Thr in yeast enhanced GFP (yEGFP)
[15]. To facilitate detection by Western blotting and immunofluo-
rescence, a hemagglutinin (HA) tag was introduced directly up-
stream of GFP (Fig. 1B). We found that GFP fluorescence was
abolished when Ile123 was changed to Thr (data not shown), and
this mutant was therefore not further studied.

To obtain a version of gGFP that is localized to the lumen of the
ER, the signal peptide (SP) from invertase was fused to the N termi-
nus of GFP (Fig. 1B). Three constructs each carrying GFP,
GFP(E172T) or SP-GFP(E172T) were transformed into the S. cerevisi-
ae strain W303-1a. Whole-cell lysates were prepared and fluores-
cence was measured. While fluorescence of GFP(E172T) was
comparable to that of wildtype GFP, fluorescence of SP-GFP(E172T)
was not significantly different from the whole-cell lysate prepared
from a yeast transformant carrying an empty vector (Fig. 1C). We
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noticed that the version of GFP used in the study, yEGFP [15], in
itself has much lower fluorescence when localized to the lumen
of the ER. When comparing the fluorescence of SP-GFP and
SP-GFP(E172T), approximately a twofold reduction in fluorescence
for SP-GFP(E172T) was observed (Fig. 1C, inset). Hence, the
addition of the glycan moiety reduces the residual fluorescence
of lumenally located SP-GFP(E172T) to background levels.

To further determine whether SP-GFP(E172T) was translocated
to the lumen of the ER, whole-cell lysates were treated with endo-
glycosidase H (Endo H) for removal of N-glycans, followed by SDS–
PAGE and Western blotting. The sample treated with Endo H
showed faster migration on the Western blot, indicating that
GFP(E172T) was glycosylated, and thus correctly translocated to
the lumen of the ER (Fig. 1D). Next, fluorescence from the cells
expressing either GFP(E172T) or SP-GFP(E172T) was assessed by
fluorescence microscopy. Only the cells expressing the cytosolical-
ly localized GFP(E172T) exhibited a detectable fluorescence signal
(Fig. 1E). These results demonstrate that GFP(E172T) is unglycosy-
lated and fluorescent in the cytosol but is glycosylated and non-
fluorescent when localized in the ER lumen. We call this version
of GFP, glycosylatable GFP (gGFP).

3.2. gGFP is a robust topology reporter

To test whether gGFP can be used as a topology reporter, we
fused it to the C terminus of two membrane protein constructs
based on the Lep protein from E. coli, an inner membrane protein
with two TM helices (TM1, TM2) near the N terminus [22]. In these
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constructs, TM2 was replaced by two different 19-residue long seg-
ments; one composed of polar residues (P) that does not insert into
the inner membrane (construct Lep-Cin-gGFP) and the other com-
posed of a very hydrophobic [6 Leu/13Ala] segment (H) that is
known to insert efficiently into the ER membrane (Lep-Cout-gGFP)
[14] (Fig. 2A). Whole-cell lysates from yeast transformants express-
ing Lep-Cin-gGFP exhibited high fluorescence, whereas Lep-Cout-
gGFP transformants showed only weak fluorescence (Fig. 2B).

Next, to assess the glycosylation status of the two constructs,
whole-cell lysates from yeast transformants expressing either
Lep-Cin-gGFP or Lep-Cout-gGFP were prepared and treated with
Endo H. Two glycan acceptor sites are present in the Lep part,
one in the lumenally located N-terminal tail and the other just
downstream of the P or H segment, hence molecules with a single
glycan (1G) have an Nout–Cin membrane topology, whereas triply
glycosylated molecules (3G) have an Nout–Cout orientation
(Fig. 2A). As expected, Lep-Cin-gGFP was singly glycosylated and
Lep-Cout-gGFP was triply glycosylated (Fig. 2C). A cleaved and gly-
cosylated form of Lep-Cout-gGFP was also detected. Previously, it
was shown that this form is generated by signal peptidase cleavage
in the [6Leu/13Ala] segment, releasing the C-terminal domain of
the protein to the lumen [14]. These results demonstrate that gGFP
fusion neither interferes with correct protein targeting nor with
the membrane topology, thus can be used for topology mapping.
3.3. Additional glycosylation site in gGFP

For large membrane proteins, the difference in molecular weight
between the presence or absence of a single N-linked glycan
(�2 kDa) in gGFP might be too small to be detected on SDS-gels.
To overcome this difficulty, an additional glycosylation site was
engineered at positions 7 or 228 in gGFP, or in the HA tag. The posi-
tions of these sites were chosen such that they would least disrupt
folding and maturation of the fluorophore. To test the efficiency of
N-linked glycosylation at the three sites, whole-cell lysates of yeast
transformants expressing GFP(L7N/E172T), GFP(E172T/G228N),
GFP(HAg/E172T), SP-GFP(L7N/E172T), SP-GFP(E172T/G228N), or
SP-GFP(HAg/E172T) were prepared and subjected to Endo H diges-
tion. SP-GFP(E172T/G228N) and SP-GFP(HAg/E172T) were effi-
ciently glycosylated on both sites (Fig. 3A). In comparison, Asn7 in
SP-GFP(L7N/E172T) did not get efficiently glycosylated as about
equal amounts of singly and doubly glycosylated proteins were
apparent. Whole-cell lysates from yeast transformants expressing
these constructs were then tested for fluorescence. GFP(E172T/
G228N) did not fluoresce, whereas GFP(L7N/E172T) and GFP(HAg/
E172T) showed comparable levels of fluorescence as GFP(E172T)
(Fig. 3B). Since the additional glycosylation site was efficiently gly-
cosylated and the fluorescence pattern of gGFP was maintained in
GFP(HAg/E172T), this version of gGFP can be used to assay the
topology of membrane proteins of relatively large size.
4. Discussion

We have developed a glycosylatable version of GFP (gGFP) as a
reporter for membrane topology and subcellular localization in the
secretory pathway in eukaryotic cells. An N-linked glycosylation
site was engineered close to the fluorophore in yEGFP. This change
did not interfere with maturation of the fluorophore when gGFP
was expressed in the cytosol, but led to efficient glycosylation
and reduction of fluorescence when the protein was targeted to
the ER. By fusing gGFP to a membrane protein with known mem-
brane topology, we demonstrated that gGFP is a robust topology
reporter. gGFP provides a dual-function topology reporter that
can be easily analyzed in intact cells by fluorescence microscopy
and by Western blotting and fluorescence measurements with
whole-cell lysates. We also provide a version of gGFP with two
engineered glycosylation acceptor sites that can be used to deter-
mine the topology of larger membrane proteins.
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